Введение в криптографию

Общие понятия

криптография

Как уже отмечалось ранее, криптография играет одну из главных ролей в развитии технологий и стандартов ЭК. В используемых протоколах ЭК решаются типовые для различных областей техники задачи защиты информации от несанкционированного доступа, к числу которых относятся:

  • обеспечение целостности информации (невозможность для третьей стороны, расположенной между участниками информационного обмена, модифицировать передаваемую информацию таким образом, чтобы принимающая сторона этого не заметила);
  • обеспечение конфиденциальности информации (невозможность для третьей стороны получить информацию, содержащуюся в передаваемых сообщениях);
  • аутентификация источника информации (подтверждение того, что передающая сторона является тем, за кого она себя выдает); остальную часть этого пункта нужно вычеркнуть то есть невозможность для третьей стороны присвоить себе авторство какого-либо сообщения);
  • нотаризация информации (невозможность отказаться от авторства сообщения). (далее…)

Краткий обзор симметричных алгоритмов шифрования

блочный шифр

Обзор начнем с самого популярного в мире симметричного алгоритма шифрования — алгоритма DES (Data Encryption Standard).

Алгоритм DES был разработан фирмой IBM и в 1977 г. принят Национальным институтом стандартов и технологий (National Institute of Standards and Technology) в качестве стандарта Правительства США для шифрования информации категории «less-than-top-secret» (ниже, чем высшей категории секретности). С тех пор он повторно сертифицировался в качестве такого стандарта каждые 5 лет вплоть до 1993 г. В 1998 г. Национальный институт стандартов и технологий США отказался сертифицировать DES, что было связано с тем, что уровень развития вычислительной техники сделал возможным вскрытие DES относительно дешевыми средствами. (далее…)

Краткий обзор асимметричных алгоритмов шифрования

алгоритм шифрования

Большинство современных асимметричных алгоритмов базируется на сложности решения следующих математических задач:

  • Задача факторизации (разложения на множители) большого числа: умножение двух больших чисел является полиномиальной от размеров сомножителей по сложности задачей. При этом обратная задача — разложения на сомножители — является чрезвычайно трудоемкой, так, для разложения на множители числа длиной 200 цифр требуется не менее 1024 арифметических операций, что с вычислительной точки зрения является нереализуемой задачей. На сложности решения задачи факторизации основан алгоритм RSA.
  • Задача нахождения дискретного логарифма. С точки зрения вычислительной сложности достаточно легко выполнить операцию возведения в степень в конечном поле, но для решения обратной задачи — поиска дискретного логарифма — потребуется практически полный перебор элементов поля; на сложности решения задачи логарифмирования основаны алгоритмы DSA, EGSA, Diffie-Hellman.
  • Сложность декодирования в некоторых кодах, исправляющих ошибки, велика: достаточно легко получить кодовое слово (перемножить матрицы), но по кодовому слову найти базовое — задача вычислительно трудная. Этот метод редко используется на практике (известна криптосистема МсЕНесе, использующая коды Гоппа). (далее…)

Методы оценки криптостойкости

криптостойкость

Остановимся теперь на оценке криптостойкости сегодняшних криптографических алгоритмов. Начнем с описания модели вскрытия секретного ключа.

Закон Мура, в соответствии с которым вычислительная производительность микропроцессоров увеличивается в 2 раза каждые 18 месяцев или, что то же самое, в 100 раз каждые 10 лет. Сегодня типовой компьютер (Pentium based PC), подключенный к Интернету, имеет производительность около 100 MIPS (под 1 MIPS понимается производительность старого компьютера DEC VAX 11/780). Следовательно, средняя производительность PC в 2010 г. будет составлять 10 000 MIPS. (далее…)

Системы управления ключами

криптосистемa

С появлением большого числа криптосистем, основанных на использовании принятых в мире стандартов шифрования, встала новая не менее важная проблема, связанная с тем, что для обмена зашифрованными сообщениями между двумя участниками криптосистемы необходимо, чтобы обоим участникам обмена были заранее доставлены тщательно сохраняемые в секрете ключи для зашифрования и расшифрования сообщений.

Эта проблема становится тем более сложной, чем больше удаленных друг от друга пользователей желают обмениваться между собою зашифрованными сообщениями. Так, для сети из N пользователей необходимо иметь  одновременно в действии N*(N-1)/2 различных ключей. Тогда уже при N=1000 количество необходимых ключей будет близко к полумиллиону. Поскольку из соображений безопасности секретные ключи для шифрования должны меняться как можно чаще, то изготовление, упаковка и рассылка их с надежными курьерами из некоего абсолютно надежного центра (как это привычно делают в действующих системах «закрытой связи») становится задачей совершенно нереальной. (далее…)

Вверх